Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(11): e9747, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38600640

RESUMO

RATIONALE: N-Nitroso dimethylamine (NDMA) is a mutagenic impurity detected in several ranitidine products. The amino functional group of ranitidine is a risk factor for classical nitrosation-induced NDMA formation in ranitidine drug products during storage conditions. The United States Food and Drug Administration (US FDA) recommended the use of antioxidants to control NDMA in drug products. Considering the need for sensitive analytics, a liquid chromatography/high-resolution mass spectrometry (LC-HRMS) method was developed and validated to detect NDMA in this pilot study to demonstrate the antioxidants as inhibitors of nitrosation reactions. METHODS: The method, utilizing an EC-C18 column and tuned to atmospheric pressure chemical ionization/selected ion monitoring (APCI/SIM) mode, separated NDMA (m/z: 75.0553; tR: 3.71 min) and ranitidine (m/z: 315.1485; tR: 8.61 min). APCI mode exhibited four times higher sensitivity to NDMA than electrospray ionization (ESI) mode. Classical nitrosation of the dimethyl amino group of ranitidine was studied with sodium nitrite in solid pellets. Antioxidants (alpha-tocopherol, ascorbic acid, and trolox) were evaluated as NDMA attenuators in ranitidine pellets under vulnerable storage conditions. The developed method quantified NDMA levels in samples, extracted with methanol through vortex shaking for 45 min. RESULTS: The method achieved a limit of detection (LOD) and limit of quantitation (LOQ) of 0.01 and 0.05 ng/mL, respectively, with linearity within 1-5000 ng/mL (R1: 0.9995). It demonstrated good intra-day and inter-day precision (% RSD [relative standard deviation]: <2) and accuracy (96.83%-101.72%). Nitrosation of ranitidine induced by nitrite was significant (p < 0.001; R2 = 0.9579) at various sodium nitrite levels. All antioxidants efficiently attenuated NDMA formation during ranitidine nitrosation. Ascorbic acid exhibited the highest NDMA attenuation (96.98%), followed by trolox (90.58%). This study recommends 1% ascorbic acid and trolox as potent NDMA attenuators in ranitidine drug products. CONCLUSIONS: This study compared the effectiveness of antioxidants as NDMA attenuators in ranitidine under storage conditions susceptible to NDMA generation. The study concluded that ascorbic acid and trolox are potent inhibitors of NDMA formation and nitrosation attenuators in ranitidine drug products.


Assuntos
Dimetilnitrosamina , Ranitidina , Ranitidina/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Antioxidantes , Cromatografia Líquida de Alta Pressão/métodos , Nitrosação , Nitrito de Sódio , Projetos Piloto , Preparações Farmacêuticas , Ácido Ascórbico
2.
ACS Med Chem Lett ; 15(3): 388-395, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38505840

RESUMO

In this study, carbazole (MC) and dibenzofuran (MD) derivatives were synthesized to examine their effect on the biomolecular recognition of G-quadruplex (G4) targets. Biophysical studies revealed that MC-4, a carbazole derivative, exhibits a specific affinity and effectively stabilizes the c-KIT 1 G4. Molecular modeling suggests a stable interaction of MC-4 with the terminal G-tetrad of c-KIT 1 G4. Biological studies demonstrate that MC-4 efficiently enters cells, reduces c-KIT gene expression, and induces cell cycle arrest, DNA damage, and apoptosis in cancer cells. These findings demonstrate MC-4 as a selective c-KIT G4 ligand with therapeutic potential, providing insight into the structural basis of its anticancer mechanisms.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38486387

RESUMO

BACKGROUND: The toxin-antitoxin system is a genetic element that is highly present in Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. The toxin-antitoxin sys-tem comprises toxin protein and antitoxin protein or non-encoded RNA interacting with each other and inhibiting toxin activity. M. Tuberculosis has more classes of TA loci than non-tubercle bacilli and other microbes, including VapBC, HigBA, MazEF, ParDE, RelBE, MbcTA, PemIK, DarTG, MenTA, one tripartite type II TAC chaperone system, and hypothetical proteins. AIMS: The study aims to demonstrate the genes encoded toxin-antitoxin system in mycobacterium tuberculosis strains from clinical samples. MATERIALS AND METHODS: The pulmonary and extra-pulmonary tuberculosis clinical samples were collected, and smear microscopy (Ziehl-Neelsen staining) was performed for the detection of high bacilli (3+) count, followed by nucleic acid amplification assay. Bacterial culture and growth assay, genomic DNA extraction, and polymerase chain reaction were also carried out. RESULTS: The positive PTB and EPTB samples were determined by 3+ in microscopy smear [20], and the total count of tubercle bacilli determined by NAAT assay was 8.0×1005 in sputum and 1.3×1004 CFU/ml in tissue abscess. Moreover, the genomic DNA was extracted from culture, and the amplification of Rv1044 and Rv1045 genes in 624 and 412 base pairs (between 600-700 and 400-500 in ladder), respectively, in the H37Rv and clinical samples was observed. CONCLUSION: It has been found that Rv1044 and Rv1045 are hypothetical proteins with 624 and 882 base pairs belonging to the AbiEi/AbiEii family of toxin-antitoxin loci. Moreover, the signifi-cant identification of TA-encoded loci genes may allow for the investigation of multidrug-resistant and extensively drug-resistant tuberculosis.

4.
J Biomol Struct Dyn ; : 1-12, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356141

RESUMO

Picrorhiza kurroa Royle ex Benth. (P. kurroa/PK/Kutki), a Himalayan herb belonging to the family Scrophulariaceae, is widely known for its hepatoprotective activity. Traditionally, it is found to be effective for upper respiratory tract disorders, kidney and liver problems, dyspepsia and chronic diarrhoea but the mechanism of action is unclear. In this study, the mode of action of P. kurroa for the treatment of diabetic nephropathy (DN) was investigated by network pharmacology, molecular docking and in vitro assays. Numerous databases have been screened and 33 P. kurroa bioactive compounds and 56 targets were identified. The compounds-targets network, targets-pathways network and compounds-targets-pathways network were constructed. The major bioactive compounds include picrorhizaoside D, scrophuloside A, vanillic acid, arvenin I, cinnamic acid, picein, 6-feruloyl catalpol, picroside V, pikuroside, apocynin, picroside I, picroside IV, androsin, cucurbitacin P, boschnaloside, kutkoside, cucurbitacin O, cucurbitacin K, picracin, etc. The potential protein targets identified in this study were MMP1, PRKCA, MMP7, IL18, IL1, TNF, ACE, ASC, CASP1, NLRP3, MAP, KURROA1, mitogen-activated protein kinase (MAPK)14 and MAPK8. In the Database for annotation visualization and integrated discovery (DAVID) pathways and Gene Ontology enrichment analysis, 14 major DN signalling pathways were identified, including MAPK, renin-angiotensin system (RAS), TNF, signal transducer and activator of transcription (JAK-STAT), TLR, vascular endothelial growth factor (VEGF), mTOR, Wnt, Ras, PPARs, NFB, NOD and phosphatidylinositol signalling pathways. A molecular docking study revealed that 32 bioactive compounds of P. kurroa interacted with 14 significant proteins/genes associated with DN. P. kurroa extract was proven to enhance the survival rate of HEK cells significantly. Protein expression analysis using Western blot demonstrated that P. kurroa extract significantly altered the expression of p47phox, p67phox, gp91phox, IL-1 and TGFß-1. As a result of network pharmacology and docking work, new concepts for discovering bioactive compounds and effective modes of action could be developed. The potential effect of P. kurroa extract on DN disease was evident in the in-vitro studies aided by network pharmacology and molecular docking.Communicated by Ramaswamy H. Sarma.

5.
J Ethnopharmacol ; 326: 117935, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38408692

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nonalcoholic fatty liver disease (NAFLD) is the most common severe liver disease globally, progressing further into nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Vasaguduchyadi Kwatha (VK) is an Ayurvedic formulation traditionally used to treat liver diseases and other metabolic complications. This study is an ethnopharmacological approach to unravel this indigenous remedy. AIM OF THE STUDY: We aimed to discover the probable mechanism of action of VK against NASH in this study, using network pharmacology, molecular docking, in vitro study, and preclinical investigation. METHODS AND RESULTS: Among the 55 components identified, 10 were confirmed based on mass, elution charecteristics, MS/MS analysis data, and fragmentation rules. Computational study indicated 92 targets involved in the central pathways of NASH, out of which only 15 targets and 9 VK constituents have significant docking scores. In vitro and in vivo analysis results showed that VK significantly reduces weight gain and improves insulin sensitivity, dyslipidemia, steatohepatitis and overall histological features of NASH compared to saroglitazar (SGZR). CONCLUSION: Our detailed study yielded three signalling pathways related to NASH on which VK has maximum effect, bringing up a probable alternative treatment for NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Fígado/metabolismo
6.
Homeopathy ; 113(1): 16-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37673083

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a potentially fatal disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have shown that hydroxychloroquine (HCQ) significantly inhibits SARS-CoV-2 infections in vitro. OBJECTIVE: Since the phytoconstituents of Cinchona officinalis (CO) are similar to those of HCQ, the objective of this study was to test the antiviral potential of different homeopathic formulations of CO. METHODS: An analysis of the molecular composition of CO was carried out using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, followed by a detailed docking study. The constituents of CO were docked against various targets of SARS-CoV-2, and the binding potential of the phytoconstituents was compared and quantified. The ligand with the lowest Glide docking score is considered to have the best binding affinity. The cytotoxicity of several homeopathic formulations, including CO mother tincture (CO-MT), was also checked on VeroE6 cells. A known antiviral, remdesivir, was used as a positive control for the in vitro assays to evaluate the effects of CO-MT against SARS-CoV-2-infected VeroE6 cells. RESULTS: Molecular docking studies showed that constituents of CO exhibited binding potential to various targets of SARS-CoV-2, including Mpro, PLpro, RdRp, nucleocapsid protein, ACE2 (in host) and spike protein. Quinoline, one of the constituents of CO, can potentially bind the spike protein of SARS-CoV-2. Quinic acid showed better binding capabilities with Mpro, PLpro RdRp, nucleocapsid protein and ACE2 (allosteric site) than other constituents. Quinidine exhibited better binding to ACE2. Compared to HCQ, other phytoconstituents of CO had the equivalent potential to bind the RNA-dependent RNA polymerase, nucleocapsid protein, Mpro, PLpro and spike protein of SARS-CoV-2. In vitro assays showed that homeopathic CO-MT was not cytotoxic and that CO-MT and remdesivir respectively caused 89% and 99% inhibition of SARS-CoV-2 infection in VeroE6 cells. CONCLUSION: Based on this in silico and in vitro evidence, we propose CO-MT as a promising antiviral medicine candidate for treating COVID-19. In vivo investigation is required to clarify the therapeutic potential of CO-MT in COVID-19.


Assuntos
COVID-19 , Cinchona , Homeopatia , Materia Medica , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus , Proteínas do Nucleocapsídeo , RNA Polimerase Dependente de RNA , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
Discov Nano ; 18(1): 156, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112935

RESUMO

The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.

8.
Int J Biol Macromol ; 253(Pt 8): 127567, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866569

RESUMO

Visceral leishmaniasis (VL) is the most lethal among all leishmaniasis diseases and remains categorized as a neglected tropical disease (NTD). This study aimed to develop a peptide-based multi-epitope vaccine construct against VL using immunoinformatics methodologies. To achieve this, four distinct proteins were screened to identify peptides consisting of 9-15 amino acids with high binding affinity to toll-like receptors (TLRs), strong antigenicity, low allergenicity, and minimal toxicity. The resulting multi-epitope vaccine construct was fused in a tandem arrangement with appropriate linker peptides and exhibited superior properties related to cytotoxic T lymphocytes (CTLs), helper T lymphocytes (HTLs), and B-cell epitopes. Subsequently, a three-dimensional (3D) model of the vaccine construct was generated, refined, and validated for structural stability and immune response capabilities. Molecular docking and simulations confirmed the vaccine construct's stability and binding affinities with TLRs, with TLR4 displaying the highest binding affinity, followed by TLR2 and TLR3. Additionally, simulations predicted robust cellular and humoral antibody-mediated immune responses elicited by the designed vaccine construct. Notably, this vaccine construct includes proteins from various pathways of Leishmania donovani (LD), which have not been previously utilized in VL vaccine design. Thus, this study opens new avenues for the development of vaccines against diverse protozoan diseases.


Assuntos
Leishmaniose Visceral , Vacinas , Humanos , Leishmaniose Visceral/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/química , Peptídeos , Epitopos de Linfócito B , Biologia Computacional/métodos , Vacinas de Subunidades
10.
Int Immunopharmacol ; 116: 109569, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773572

RESUMO

Tumor-associated macrophages (TAMs) constitute the most prolific resident of the tumor microenvironment (TME) that regulate its TME into tumor suppressive or progressive milieu by utilizing immunoediting machinery. Here, the tumor cells construct an immunosuppressive microenvironment that educates TAMs to polarize from anti-tumor TAM-M1 to pro-tumor TAM-M2 phenotype consequently contributing to tumor progression. In colorectal cancer (CRC), the TME displays a prominent pro-tumorigenic immune profile with elevated expression of immune-checkpoint molecules notably PD-1, CTLA4, etc., in both MSI and ultra-mutated MSS tumors. This authenticated immune-checkpoint inhibition (ICI) immunotherapy as a pre-requisite for clinical benefit in CRC. However, in response to ICI, specifically, the MSIhi tumors evolved to produce novel immune escape variants thus undermining ICI. Lately, TAM-directed therapies extending from macrophage depletion to repolarization have enabled TME alteration. While TAM accrual implicates clinical benefit in CRC, sustained inflammatory insult may program TAMs to shift from M1 to M2 phenotype. Their ability to oscillate on both facets of the spectrum represents macrophage repolarization immunotherapy as an effective approach to treating CRC. In this review, we briefly discuss the differentiation heterogeneity of colonic macrophages that partake in macrophage-directed immunoediting mechanisms in CRC progression and its employment in macrophage re-polarization immunotherapy.


Assuntos
Neoplasias Colorretais , Macrófagos Associados a Tumor , Humanos , Macrófagos , Neoplasias Colorretais/patologia , Imunoterapia , Fenótipo , Microambiente Tumoral
12.
Curr Drug Targets ; 24(3): 247-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36503391

RESUMO

BACKGROUND: Constipation is one of the most frequent abnormalities of the gastrointestinal system that affects the patient's quality of life. Constipation is more common in women and affects them more frequently as they get older. Many constipated patients take over-the-counter drugs for treatment, but some do not respond to these medicines and need newer, more expensive drugs. Still, many patients are not completely satisfied with these medicines. Unlike other areas, constipation research is not given much importance. OBJECTIVE: This review discusses targets such as ClC-2, CFTR, opioid receptors, and 5HT-4 receptors, which are important in constipation therapy. The recent focus is also on the gut microbiome with the help of various randomized controlled trials. Pharmacological advances have also added novel targets such as IBAT, PAR-2, and intestinal NHE-3 for constipation treatment. METHODS: This review summarises the research on these targets collected from various databases. ClC-2 and CFTR are involved in intestinal chloride secretion followed by sodium or water, which increases stool passage. Non-cancer pain treatment with opioids targeting opiate receptors is considered in 40-90% of patients, which causes constipation as a side effect. On activation, 5HT-4 receptors increase gastrointestinal motility. IBAT is responsible for transporting bile acid into the liver. Bile acid will reach the colon by inhibiting IBAT, stimulating colonic motility, and providing a laxative effect. Activation of the ghrelin receptor results in prokinetic activity in both animals and humans. Intestinal NHE-3 mediates the absorption of Na+ and the secretion of hydrogen into the intestine. Many reports show that PAR-2 is involved in the pathogenesis of gastrointestinal diseases. The gut microbiota influences the peristaltic action of the intestine. CONCLUSION: Drugs working on these targets positively impact the treatment of constipation, as do the drugs that are currently in clinical trials acting on these targets. The results from the ongoing clinical trials will also provide some valuable information regarding whether these medications will meet the patients' needs in the future.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Qualidade de Vida , Animais , Humanos , Feminino , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/etiologia , Laxantes/farmacologia , Laxantes/uso terapêutico , Ácidos e Sais Biliares
13.
Pharmaceutics ; 14(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559311

RESUMO

The delivery of drugs via transdermal routes is an attractive approach due to ease of administration, bypassing of the first-pass metabolism, and the large skin surface area. However, a major drawback is an inability to surmount the skin's stratum corneum (SC) layer. Therefore, techniques reversibly modifying the stratum corneum have been a classical approach. Surmounting the significant barrier properties of the skin in a well-organised, momentary, and harmless approach is still challenging. Chemical permeation enhancers (CPEs) with higher activity are associated with certain side effects restricting their advancement in transdermal drug delivery. Furthermore, complexity in the interaction of CPEs with the skin has led to difficulty in elucidating the mechanism of action. Nevertheless, CPEs-aided transdermal drug delivery will accomplish its full potential due to advancements in analytical techniques, synthetic chemistry, and combinatorial studies. This review focused on techniques such as drug-vehicle interaction, vesicles and their analogues, and novel CPEs such as lipid synthesis inhibitors (LSIs), cell-penetrating peptides (CPPs), and ionic liquids (ILs). In addition, different types of microneedles, including 3D-printed microneedles, have been focused on in this review.

14.
Vaccines (Basel) ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366359

RESUMO

Gallbladder cancer (GBC) is an aggressive and difficult to treat biliary tract carcinoma with a poor survival rate. The aim of this study was to design a peptide-based multi-epitope vaccine construct against GBC using immunoinformatics approaches. Three proteins implicated in the progression of GBC were selected for B and T cell epitope prediction and the designing of the potential vaccine construct. Seven CTL, four HTL and six Bcell epitopes along with a suitable adjuvant were selected and connected using linkers for designing the vaccine construct. The secondary and tertiary models of the designed vaccine were generated and satisfactorily validated. A Ramachandran plot of the final 3D model showed more than 90% of the residues in allowed regions and only 0.4% in disallowed regions. The binding affinity of a vaccine construct with TLR 2, 3 and 4 receptors was assessed through molecular docking and simulation. The average numbers of hydrogen bonds for vaccine-TLR 2, 3 and 4 complexes in the simulation were 15.36, 16.45, and 11.98, respectively, and remained consistent over a 100 ns simulation period, which is critical for their function. The results of this study provide a strong basis for further evaluation through in vitro/in vivo experimental validation of the safety and efficacy of the designed vaccine construct.

16.
Front Cell Infect Microbiol ; 12: 985178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237424

RESUMO

Before the discovery of the proteasome complex, the lysosomes with acidic proteases and caspases in apoptotic pathways were thought to be the only pathways for the degradation of damaged, unfolded, and aged proteins. However, the discovery of 26S and 20S proteasome complexes in eukaryotes and microbes, respectively, established that the degradation of most proteins is a highly regulated ATP-dependent pathway that is significantly conserved across each domain of life. The proteasome is part of the ubiquitin-proteasome system (UPS), where the covalent tagging of a small molecule called ubiquitin (Ub) on the proteins marks its proteasomal degradation. The type and chain length of ubiquitination further determine whether a protein is designated for further roles in multi-cellular processes like DNA repair, trafficking, signal transduction, etc., or whether it will be degraded by the proteasome to recycle the peptides and amino acids. Deubiquitination, on the contrary, is the removal of ubiquitin from its substrate molecule or the conversion of polyubiquitin chains into monoubiquitin as a precursor to ubiquitin. Therefore, deubiquitylating enzymes (DUBs) can maintain the dynamic state of cellular ubiquitination by releasing conjugated ubiquitin from proteins and controlling many cellular pathways that are essential for their survival. Many DUBs are well characterized in the human system with potential drug targets in different cancers. Although, proteasome complex and UPS of parasites, like plasmodium and leishmania, were recently coined as multi-stage drug targets the role of DUBs is completely unexplored even though structural domains and functions of many of these parasite DUBs are conserved having high similarity even with its eukaryotic counterpart. This review summarizes the identification & characterization of different parasite DUBs based on in silico and a few functional studies among different phylogenetic classes of parasites including Metazoan (Schistosoma, Trichinella), Apicomplexan protozoans (Plasmodium, Toxoplasma, Eimeria, Cryptosporidium), Kinetoplastidie (Leishmania, Trypanosoma) and Microsporidia (Nosema). The identification of different homologs of parasite DUBs with structurally similar domains with eukaryotes, and the role of these DUBs alone or in combination with the 20S proteosome complex in regulating the parasite survival/death is further elaborated. We propose that small molecules/inhibitors of human DUBs can be potential antiparasitic agents due to their significant structural conservation.


Assuntos
Criptosporidiose , Cryptosporidium , Parasitos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Animais , Antiparasitários , Caspases/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Humanos , Parasitos/metabolismo , Filogenia , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
17.
J Phys Chem B ; 126(38): 7310-7320, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36112099

RESUMO

DNA-protein interactions are ubiquitous in cellular processes. Impeding unwanted nucleic acid interactions and protein recognition have therapeutic implications. Therefore, new chemical scaffolds and studies related to their structural basis of nucleic acid recognition are essential for developing high-affinity DNA binders. In this study, we have employed a fragment-based strategy to design and synthesize benzimidazole-guanidinium hybrid compounds and study the individual fragment's role in imparting selectivity and specificity in DNA recognition. The fragments were extensively studied using thermal denaturation, circular dichroism, UV-vis absorption spectroscopy, and molecular docking techniques. The results indicate an interdependent role of the benzimidazole core, polar ends, and the DNA composition in imparting sequence-selective binding of the benzimidazole-guanidinium hybrid compounds in the DNA minor groove. Circular dichroism and molecular docking studies indicated minor groove binding analogous to classical minor groove binders such as DAPI and Hoechst 33258. Thermal denaturation studies indicated that the best binder (compound 8) gave similar thermal stabilization to B-DNA as given by DAPI.


Assuntos
Bisbenzimidazol , DNA de Forma B , Benzimidazóis/química , Benzimidazóis/metabolismo , Dicroísmo Circular , DNA/química , Guanidina/química , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico
18.
J Phys Chem B ; 126(38): 7298-7309, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36103341

RESUMO

The development of new fluorescent molecules for the recognition of specific G-quadruplex DNA structures has attracted wide attention due to their diverse roles in drug design, sensing, and cellular probing. In this work, we report the discovery of a red-emissive styryl quinolinium-based molecular rotor (compound 1), which recognizes human telomeric G-quadruplex with a distinct preference over DNA duplexes. Optical spectroscopy (UV-vis and circular dichroism)-based experiments indicated discernible interaction of compound 1 with the human telomeric DNA G-quadruplex with features of stacking interactions. Fluorescence-based Job's plot revealed a 1:1 binding stoichiometry between compound 1 and the human telomeric DNA G-quadruplex, and subsequent titration experiments showed micromolar affinities (Ka = 0.51 × 106 M-1). Molecular docking experiments showed interactions of compound 1 in the grooves of the quadruplex. Finally, we provide the application of compound 1 as a reporter molecule in the fluorescence displacement experiments, which showed its ability to act as a fluorescent probe compatible with ligands having aromatic cores.


Assuntos
Quadruplex G , Dicroísmo Circular , DNA/química , Corantes Fluorescentes , Humanos , Ligantes , Simulação de Acoplamento Molecular , Telômero
19.
Cell Biol Int ; 46(12): 2142-2157, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36086947

RESUMO

Impaired nutrient sensing mechanisms such as AMPK/silent information regulator type 1 (SIRT1) axis and autophagy in renal cells upon chronic diabetic condition accelerate renal injury and upregulating these mechanisms has been reported to prevent renal damage. Melatonin, a neuroendocrine agent, also possess antioxidant and AMPK modulatory effect. In the current study, the protective effect of melatonin against diabetic renal injury was assessed in streptozotocin-induced diabetic nephropathy model and in in vitro model of high-glucose-induced tubular injury. Melatonin (3 and 10 mg/kg) was administered for 28 days after 4 weeks of diabetes induction in Sprague-Dawley rats. For in vitro model, the NRK-52E cells were co-incubated with high glucose and melatonin (25 and 50 µM). Melatonin supplementation abrogated the diabetes-induced renal injury and improved renal function in diabetic rats. Immunoblot analysis of renal tissue lysates revealed improved expression of AMPK, as well as upregulated the expression of nuclear factor erythroid 2-related factor 2, SIRT1, PGC-1α, TFAM and enhanced autophagy upon melatonin treatment in diabetic rats. Likewise, melatonin treatment in high glucose exposed NRK-52E cells improved expression of AMPK, enhanced mitochondrial biogenesis and positively modulated autophagy. However, these effects were repressed upon inhibition of AMPK activity in NRK-52E cells by treatment of Compound-C, suggesting that the protective effects of melatonin were mainly mediated through activation of AMPK. These results suggest that melatonin might mediate the renoprotective effect by upregulating the AMPK/SIRT1 axis, enhancing the autophagy and mitochondrial health in DIabetic Nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Melatonina , Ratos , Animais , Melatonina/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos Sprague-Dawley , Autofagia , Mitocôndrias/metabolismo , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...